Copied to
clipboard

G = D6.4S32order 432 = 24·33

1st non-split extension by D6 of S32 acting via S32/C3⋊S3=C2

metabelian, supersoluble, monomial

Aliases: D6.4S32, Dic3.2S32, C3⋊D122S3, D6⋊S34S3, (S3×Dic3)⋊2S3, (S3×C6).10D6, C333(C4○D4), C336D44C2, C334Q84C2, C3⋊Dic3.19D6, C32(D125S3), C31(D6.4D6), C33(D6.3D6), (C3×Dic3).21D6, C3216(C4○D12), C329(D42S3), (C32×C6).15C23, C335C4.4C22, (C32×Dic3).4C22, C2.15S33, C6.15(C2×S32), (C3×S3×Dic3)⋊4C2, C339(C2×C4)⋊2C2, (S3×C3⋊Dic3)⋊8C2, (C2×C3⋊S3).17D6, (S3×C3×C6).6C22, (C3×C3⋊D12)⋊6C2, (C3×D6⋊S3)⋊6C2, (C6×C3⋊S3).20C22, (C3×C6).64(C22×S3), (C3×C3⋊Dic3).30C22, SmallGroup(432,608)

Series: Derived Chief Lower central Upper central

C1C32×C6 — D6.4S32
C1C3C32C33C32×C6S3×C3×C6C3×S3×Dic3 — D6.4S32
C33C32×C6 — D6.4S32
C1C2

Generators and relations for D6.4S32
 G = < a,b,c,d,e | a3=b12=c2=d3=e2=1, bab-1=cac=a-1, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b6c, ede=d-1 >

Subgroups: 1116 in 210 conjugacy classes, 46 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C2×C4, D4, Q8, C32, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C2×C3⋊S3, C62, C4○D12, D42S3, S3×C32, C3×C3⋊S3, C32×C6, S3×Dic3, S3×Dic3, C6.D6, D6⋊S3, D6⋊S3, C3⋊D12, C322Q8, S3×C12, C3×D12, C6×Dic3, C3×C3⋊D4, C324Q8, C2×C3⋊Dic3, C327D4, C32×Dic3, C3×C3⋊Dic3, C335C4, S3×C3×C6, C6×C3⋊S3, D125S3, D6.3D6, D6.4D6, C3×S3×Dic3, C3×D6⋊S3, C3×C3⋊D12, S3×C3⋊Dic3, C336D4, C334Q8, C339(C2×C4), D6.4S32
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, S32, C4○D12, D42S3, C2×S32, D125S3, D6.3D6, D6.4D6, S33, D6.4S32

Smallest permutation representation of D6.4S32
On 48 points
Generators in S48
(1 9 5)(2 6 10)(3 11 7)(4 8 12)(13 17 21)(14 22 18)(15 19 23)(16 24 20)(25 29 33)(26 34 30)(27 31 35)(28 36 32)(37 41 45)(38 46 42)(39 43 47)(40 48 44)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 28)(2 27)(3 26)(4 25)(5 36)(6 35)(7 34)(8 33)(9 32)(10 31)(11 30)(12 29)(13 47)(14 46)(15 45)(16 44)(17 43)(18 42)(19 41)(20 40)(21 39)(22 38)(23 37)(24 48)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 37)(11 38)(12 39)(13 27)(14 28)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)(22 36)(23 25)(24 26)

G:=sub<Sym(48)| (1,9,5)(2,6,10)(3,11,7)(4,8,12)(13,17,21)(14,22,18)(15,19,23)(16,24,20)(25,29,33)(26,34,30)(27,31,35)(28,36,32)(37,41,45)(38,46,42)(39,43,47)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,28)(2,27)(3,26)(4,25)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,25)(24,26)>;

G:=Group( (1,9,5)(2,6,10)(3,11,7)(4,8,12)(13,17,21)(14,22,18)(15,19,23)(16,24,20)(25,29,33)(26,34,30)(27,31,35)(28,36,32)(37,41,45)(38,46,42)(39,43,47)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,28)(2,27)(3,26)(4,25)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,25)(24,26) );

G=PermutationGroup([[(1,9,5),(2,6,10),(3,11,7),(4,8,12),(13,17,21),(14,22,18),(15,19,23),(16,24,20),(25,29,33),(26,34,30),(27,31,35),(28,36,32),(37,41,45),(38,46,42),(39,43,47),(40,48,44)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,28),(2,27),(3,26),(4,25),(5,36),(6,35),(7,34),(8,33),(9,32),(10,31),(11,30),(12,29),(13,47),(14,46),(15,45),(16,44),(17,43),(18,42),(19,41),(20,40),(21,39),(22,38),(23,37),(24,48)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,37),(11,38),(12,39),(13,27),(14,28),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35),(22,36),(23,25),(24,26)]])

42 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E3F3G4A4B4C4D4E6A6B6C6D6E6F6G6H6I6J···6P6Q12A12B12C12D12E12F12G12H
order122223333333444446666666666···661212121212121212
size1166182224448699185422244466812···123666121212181836

42 irreducible representations

dim11111111222222222444444488
type+++++++++++++++++-+--+-
imageC1C2C2C2C2C2C2C2S3S3S3D6D6D6D6C4○D4C4○D12S32S32D42S3C2×S32D125S3D6.3D6D6.4D6S33D6.4S32
kernelD6.4S32C3×S3×Dic3C3×D6⋊S3C3×C3⋊D12S3×C3⋊Dic3C336D4C334Q8C339(C2×C4)S3×Dic3D6⋊S3C3⋊D12C3×Dic3C3⋊Dic3S3×C6C2×C3⋊S3C33C32Dic3D6C32C6C3C3C3C2C1
# reps11111111111224124122322211

Matrix representation of D6.4S32 in GL8(𝔽13)

10000000
01000000
00100000
00010000
000012100
000012000
00000010
00000001
,
012000000
10000000
001200000
000120000
00000100
00001000
00000001
000000121
,
10000000
012000000
001200000
000120000
000001200
000012000
000000121
00000001
,
10000000
01000000
00010000
0012120000
00001000
00000100
00000010
00000001
,
08000000
50000000
001200000
00110000
000012000
000001200
000000120
000000012

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1],[1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12] >;

D6.4S32 in GAP, Magma, Sage, TeX

D_6._4S_3^2
% in TeX

G:=Group("D6.4S3^2");
// GroupNames label

G:=SmallGroup(432,608);
// by ID

G=gap.SmallGroup(432,608);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,254,135,298,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^12=c^2=d^3=e^2=1,b*a*b^-1=c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^6*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽