metabelian, supersoluble, monomial
Aliases: D6.4S32, Dic3.2S32, C3⋊D12⋊2S3, D6⋊S3⋊4S3, (S3×Dic3)⋊2S3, (S3×C6).10D6, C33⋊3(C4○D4), C33⋊6D4⋊4C2, C33⋊4Q8⋊4C2, C3⋊Dic3.19D6, C3⋊2(D12⋊5S3), C3⋊1(D6.4D6), C3⋊3(D6.3D6), (C3×Dic3).21D6, C32⋊16(C4○D12), C32⋊9(D4⋊2S3), (C32×C6).15C23, C33⋊5C4.4C22, (C32×Dic3).4C22, C2.15S33, C6.15(C2×S32), (C3×S3×Dic3)⋊4C2, C33⋊9(C2×C4)⋊2C2, (S3×C3⋊Dic3)⋊8C2, (C2×C3⋊S3).17D6, (S3×C3×C6).6C22, (C3×C3⋊D12)⋊6C2, (C3×D6⋊S3)⋊6C2, (C6×C3⋊S3).20C22, (C3×C6).64(C22×S3), (C3×C3⋊Dic3).30C22, SmallGroup(432,608)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6.4S32
G = < a,b,c,d,e | a3=b12=c2=d3=e2=1, bab-1=cac=a-1, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b6c, ede=d-1 >
Subgroups: 1116 in 210 conjugacy classes, 46 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C2×C4, D4, Q8, C32, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C2×C3⋊S3, C62, C4○D12, D4⋊2S3, S3×C32, C3×C3⋊S3, C32×C6, S3×Dic3, S3×Dic3, C6.D6, D6⋊S3, D6⋊S3, C3⋊D12, C32⋊2Q8, S3×C12, C3×D12, C6×Dic3, C3×C3⋊D4, C32⋊4Q8, C2×C3⋊Dic3, C32⋊7D4, C32×Dic3, C3×C3⋊Dic3, C33⋊5C4, S3×C3×C6, C6×C3⋊S3, D12⋊5S3, D6.3D6, D6.4D6, C3×S3×Dic3, C3×D6⋊S3, C3×C3⋊D12, S3×C3⋊Dic3, C33⋊6D4, C33⋊4Q8, C33⋊9(C2×C4), D6.4S32
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, S32, C4○D12, D4⋊2S3, C2×S32, D12⋊5S3, D6.3D6, D6.4D6, S33, D6.4S32
(1 9 5)(2 6 10)(3 11 7)(4 8 12)(13 17 21)(14 22 18)(15 19 23)(16 24 20)(25 29 33)(26 34 30)(27 31 35)(28 36 32)(37 41 45)(38 46 42)(39 43 47)(40 48 44)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 28)(2 27)(3 26)(4 25)(5 36)(6 35)(7 34)(8 33)(9 32)(10 31)(11 30)(12 29)(13 47)(14 46)(15 45)(16 44)(17 43)(18 42)(19 41)(20 40)(21 39)(22 38)(23 37)(24 48)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 37)(11 38)(12 39)(13 27)(14 28)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)(22 36)(23 25)(24 26)
G:=sub<Sym(48)| (1,9,5)(2,6,10)(3,11,7)(4,8,12)(13,17,21)(14,22,18)(15,19,23)(16,24,20)(25,29,33)(26,34,30)(27,31,35)(28,36,32)(37,41,45)(38,46,42)(39,43,47)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,28)(2,27)(3,26)(4,25)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,25)(24,26)>;
G:=Group( (1,9,5)(2,6,10)(3,11,7)(4,8,12)(13,17,21)(14,22,18)(15,19,23)(16,24,20)(25,29,33)(26,34,30)(27,31,35)(28,36,32)(37,41,45)(38,46,42)(39,43,47)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,28)(2,27)(3,26)(4,25)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,25)(24,26) );
G=PermutationGroup([[(1,9,5),(2,6,10),(3,11,7),(4,8,12),(13,17,21),(14,22,18),(15,19,23),(16,24,20),(25,29,33),(26,34,30),(27,31,35),(28,36,32),(37,41,45),(38,46,42),(39,43,47),(40,48,44)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,28),(2,27),(3,26),(4,25),(5,36),(6,35),(7,34),(8,33),(9,32),(10,31),(11,30),(12,29),(13,47),(14,46),(15,45),(16,44),(17,43),(18,42),(19,41),(20,40),(21,39),(22,38),(23,37),(24,48)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,37),(11,38),(12,39),(13,27),(14,28),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35),(22,36),(23,25),(24,26)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | ··· | 6P | 6Q | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H |
order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 6 | 6 | 18 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 6 | 9 | 9 | 18 | 54 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 8 | 12 | ··· | 12 | 36 | 6 | 6 | 12 | 12 | 12 | 18 | 18 | 36 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | - | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | S3 | D6 | D6 | D6 | D6 | C4○D4 | C4○D12 | S32 | S32 | D4⋊2S3 | C2×S32 | D12⋊5S3 | D6.3D6 | D6.4D6 | S33 | D6.4S32 |
kernel | D6.4S32 | C3×S3×Dic3 | C3×D6⋊S3 | C3×C3⋊D12 | S3×C3⋊Dic3 | C33⋊6D4 | C33⋊4Q8 | C33⋊9(C2×C4) | S3×Dic3 | D6⋊S3 | C3⋊D12 | C3×Dic3 | C3⋊Dic3 | S3×C6 | C2×C3⋊S3 | C33 | C32 | Dic3 | D6 | C32 | C6 | C3 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 1 | 2 | 4 | 1 | 2 | 2 | 3 | 2 | 2 | 2 | 1 | 1 |
Matrix representation of D6.4S32 ►in GL8(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1],[1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12] >;
D6.4S32 in GAP, Magma, Sage, TeX
D_6._4S_3^2
% in TeX
G:=Group("D6.4S3^2");
// GroupNames label
G:=SmallGroup(432,608);
// by ID
G=gap.SmallGroup(432,608);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,254,135,298,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^12=c^2=d^3=e^2=1,b*a*b^-1=c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^6*c,e*d*e=d^-1>;
// generators/relations